
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

ECCV

#***
ECCV

#***

Surprisingly Simple Deep Confidence Prediction

Anonymous ECCV submission

Paper ID ***

Abstract. Computing confidence estimates that are representative of
the true uncertainty for a prediction is an important and yet unsolved
problem in deep learning. Despite significant improvements in using neu-
ral networks to perform complex predictions, there is still no unified ap-
proach to compute a calibrated confidence measurement in non-Bayesian
deep models that can capture the true probability of success associated
with its predictions. In this paper, we propose to use a multi-task learn-
ing scheme to simultaneously learn to perform a given classification or
segmentation task as well as output the probability that its prediction
for each instance of the task is correct. The confidence is computed at
the instance level using Bayesian inference with quantized distributions.
Since predicting success or failure on a given task is inherently related
with the confidence in such a prediction, jointly optimizing predictions
as well as confidences in a multi-task setup helps in the calibration of
uncertainty across training inputs. Furthermore, our approach is able to
generalize confidence prediction by associating certain types of inputs
with higher or lower levels of confidence. We validate our method on
image classification and semantic segmentation benchmarks. 1

Keywords: multi-task learning, uncertainty, calibration

1 Introduction

Deep neural networks have achieved significant success in domains such as com-
puter vision, speech recognition, and natural language processing. They are also
used as a major component in decision making pipelines in sensitive applications
such as medical diagnosis [1, 2], autonomous driving [3, 4], and economic fore-
casting [5]. However, despite the impressive performance of deep neural networks
at vision tasks, they do not provide direct confidence measurement of their pre-
dictions in either the classification or regression regime [6]. Well-calibrated prob-
abilities of failure are essential for sensitive decision-making processes and are
also valuable in other settings. For instance, predictive uncertainty can be used
to boost performance either in supervised learning problems by down-weighting
low-confidence predictions [7, 8] or in the reinforcement learning regime by using
an uncertainty-dependent cost function to avoid taking dangerous actions [9].
Also, predictive uncertainty estimates can be directly incorporated in active

1 Our code will be available upon camera-ready publication.

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

ECCV

#***
ECCV

#***

2 ECCV-18 submission ID ***

learning-based data collection pipelines that prevent collecting redundant data
if the uncertainty is expected to be below threshold.

This paper presents a simple multi-task learning (MTL) method to model
confidence followed by a Bayesian inference that determines the true probabil-
ity of success, which outperforms recent state of the art baselines. Our goal in
this paper is quantifying confidence, the true correctness likelihood at any given
instance. We define learning when we succeed as the extra task that we wish to
learn in parallel to the main task. Our approach can be used in both Bayesian
and non-Bayesian frameworks, in both classification and regression settings. The
main task can be any task that needs to be learned with supervision. The per-
formance prediction is the extra task that we believe the required information
to learn it is mutually inclusive with that needed for learning the main task. We
show below how the results can be superior to the single-task learning (STL)
regime. MTL can be implemented simply using a multi-task loss function with
contemporary deep architectures, with one or more additional layers in each
network path for each loss. Once the training completes, we use the outputs of
the second task to compute the failure probability using Bayes’ rule on binned
probabilities.

The paper consists of the following sections: In Section 3 we review our
method in detail and explain how we use multitask learning to compute confi-
dence. In Section 4 we describe baseline methods, including the best currently ex-
isting calibration tool that scales the raw softmax probabilities to their calibrated
counterparts. In Section 5 we show our performance on two well-established prob-
lems in computer vision: image classification (sec 5.1) and semantic segmentation
using fully convolutional networks [10]. We will show adding performance pre-
diction as an extra task will cause the MTL model to surpass its STL equivalent
in image classification. In Section 5.2 we use MTL with FCNs on Cityscapes
[11] and Semantic Boundaries Dataset, (SBD), and demonstrate superior per-
formance regarding predicting successful labeling of segmented pixels.

2 Related Work

Model uncertainty acquisition, sometimes referred to as confidence modeling,
in deep and/or non-linear learning frameworks has been studied from different
prospectives. Bayesian neural networks are perhaps the most popular frame-
work for this purpose [12, 13]. They often use Markov Monte Carlo methods for
small networks but can be too expensive to be implemented at scale. In order
to mitigate the computational limits of using Bayesian methods, faster solutions
were developed over the years including ”distilling” a Monte Carlo posterior
density approximation to a single deep neural network [14] which surpassed its
precedents [15, 16] which used expectation propagation and variational Bayes, re-
spectively. However, even these faster approximations do not provide a complete
representation for uncertainty mainly because they rely on simplifications to
reduce the computational barriers leading to suboptimal posterior uncertainty
distributions. [17] casted droupout [18] as approximate Bayesian inference at

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

ECCV

#***
ECCV

#***

ECCV-18 submission ID *** 3

test time. This method did not require modifications in the training pipeline
and was fast and easy to implement. Within Bayesian framework, [19, 6] de-
fined two types of uncertainty in computer vision by placing prior distributions
over model parameters and model outputs to obtain posterior distributions for
calculating epistomic and aleatoric uncertainty, respectively. Nevertheless, de-
spite the mathematically grounded framework and the applicability for both
regression and classification settings, most Bayesian neural networks are as-yet
intractable for contemporary large-scale computer vision tasks.

Another approach to quantify model confidence is to use post-processing
techniques to calibrate output probabilities of existing models. This approach
works for classification problems and has been shown to be effective in calibrating
softmax scores to reflect the true correctness likelihood. The main advantage of
these methods is they directly output a scalar value for confidence; they are
easy to implement and computationally inexpensive to compute. Methods in
this paradigm can be largely divided into two categories, parametric and non-
parametric approaches, depending on the method they use to obtain the mapping
between raw softmax probabilities and their calibrated counterparts.

Various binning techniques, which fall into non-parametric approaches, have
been used to find this mapping using different partitioning methods. Histogram
binning [20] sorts out the uncalibrated probabilities into mutually exclusive bins
with a predefined calibrated score assigned to each bin. This score will be con-
sidered as the calibrated score at test time, once a prediction falls into a bin. The
bins are commonly chosen to be equisized or to have equal number of samples
inside. The predefined calibrated score is also chosen to minimize the squared
loss per bin. One particular issue with this method is choosing the bin size as it
significantly changes the results. Also, the bin size remains fixed over all predic-
tions [21]. A general version of histogram binning, called isotonic regression, was
introduced soon after in which the bin size and calibrated score were jointly op-
timized. [21]. An extended version of histogram binning, called Bayesian Binning
into Quantiles (BBQ), was introduced as a binary classifier calibration method
that explores multiple different binning and their combination to yield more
robust calibration scores [22]. As opposed to histogram binning and isotonic
regression which return a single binning layout, BBQ searches over all possi-
ble layouts on a held-out validation set and performs Bayesian averaging of the
obtained probabilities generated by each layout.

Within the parametric paradigm, Platt’s scaling is perhaps the most widely
used approach [23] which learns parameters of a sigmoidal transformation func-
tion in the context of a neural network as the mapping function trained on a
held-out validation set. An extension of Platt’s method was recently introduced
by [24] which uses a single scalar parameter, temperature T , in softmax function
to calibrate the output probabilities. T is optimized with respect to negative log-
likelihood on a validation set. It should be noted that neither of these methods
have any influence on the model’s accuracy.

The idea of predicting the performance of a model is itself not new and has
been around in various communities. Inspired by ”meta-cognition” [25], cogni-

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

ECCV

#***
ECCV

#***

4 ECCV-18 submission ID ***

tive scientists refer to the task of performance prediction and analyzing the post-
recognition scores as ”meta-recognition” [26]. Their work is based on threshold-
ing the similarity score between a test case and the training data. They require to
use the output of the original model on an input to make the match/non match
decision while this will be a limitation if the original model is computationally
expensive. In our method, learning the extra task (performance prediction) is
added to the original model in the simplest way such that the extra computa-
tion needed is negligible. Once the performance predictor learns its task during
training, it will be able to provide the performance measurement using only the
given input to the original model at test time.

A similar approach has been also taken by [8] where they created a so called
ALERT system by training a supporting vector machine classifier that predicts
whether the original model, so called BASESYS, fails at a given task. The learn-
ing occurs in a supervised learning fashion where the data consists of BAYESYS’
input (images, video, etc) paired with the BAYESYS’s evaluation metric (either
loss or accuracy) on the corresponding input. By thresholding the output of the
SVM classifier the failure/success decision is made. Our method differs from this
work in the following way: we use multitask learning and train a performance
predictor along with training the model itself. This way the performance learner
has the opportunity to be exposed to all the mistakes that the model has made
and hence is able to generalize better as opposed to waiting for the original
model to become an expert on training data leaving no room to learn its failure
cases.

We frame our method within a transfer learning paradigm, which we im-
plement using contemporary deep learning frameworks. MTL is an well-known
inductive transfer method that improves generalization accuracy on the main
task by using the information contained in the training signals of other related
task(s) [27]. It does this by learning the extra task(s) in parallel with the main
task while using a shared representation and a joint optimization; what is learned
for each task can help other task(s) be learned better. (See [27, 28] for additional
discussion about MTL).

3 Approach

We propose a model for quantifying the probability of success, or confidence,
when using deep neural networks as a prediction function at an instance level.
Given a neural network trained to predict classification or segmentation labels
corresponding to an input instance, we want to determine whether or not and
with what probability its prediction is correct. Considering confidence predic-
tion as an auxiliary task trained along with classification or segmentation, our
proposed model learns when its prediction fails during training. After training,
we use the raw softmax probabilities of this performance predictor followed by
a Bayesian inference to compute the true probability of success. In the next sec-
tion, we describe our proposed auxiliary performance prediction in more detail.

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

ECCV

#***
ECCV

#***

ECCV-18 submission ID *** 5

Task Specific
Layers

Shared
Layers

Task 2
(Failure/Success Classifier)

Task 1
(Main Task)

Input

Fig. 1. A general multi-task model configuration to learn failure/success as an auxiliary
task along with the main task

3.1 Performance Prediction

In a regular supervised learning problem with training data consisting of N
instances {x1, · · · , xN} paired with their ground-truth labels {y1, · · · , yN}, the
task is to find a function mapping each arbitrary input xi to its corresponding
output yi where input instances can be images, text, video frames, etc. In the
multi-task setting with an additional auxiliary task to be learned, a simultaneous
training of the two tasks reinforces the training capacity for each individual if
they are related. This mainly occurs due to the useful information in training
signals of the auxiliary task [27, 28]. In a deep network framework, the more
conceptually related the two tasks are, the more layers they can share implying
that the representation learned for the secondary task is more beneficial to the
main one.

In this paper, mapping the main task’s classification or segmentation pre-
dictions, ŷ, to one of the failure or success categories is the additional task we
wish to learn. Given every (xi, yi) training pair, the {0, 1} ground truth label
for this binary classification problem can be generated by comparing ŷi with
its corresponding true label yi. Figure 1 illustrates a general multi-task model
configuration that trains this binary classifier head sharing the representation
layers with the main task. Depending on how tasks are related to each other in a
multi-task learning setting, a few hidden layers, between the shared representa-
tion layers and the final head, can be trained disjointly for each individual task,
so called task specific layers. Since the main classification or segmentation task
is inherently related with the failure and success predictions, we found out that
only one hidden layer suffices to be unshared between the two tasks.

The objective for our proposed performance prediction head is a cross-entropy
loss function which will be added to the main task loss term. Network parameters
are then updated through back-propagation from the total additive loss.

3.2 Conditional Probability of Success

Jointly training of the main task and our performance predictor reinforces the
prediction of each head of our deep network architecture to get closer to its cor-

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

ECCV

#***
ECCV

#***

6 ECCV-18 submission ID ***

responding ground truth label. On the other hand, our main goal is to train a
performance predictor that is able to predict both failure and success instances
correctly requiring equal number of examples per each binary category. However,
as the main task is improved during training, fewer failure examples will be gen-
erated, i.e., the model will be biased toward predicting success more frequently.
We therefore stop training of the performance predictor in earlier stages to have
a more desirable balanced binary data distribution. However, our experiments
reveal that pursuing our multi-task training process improves the performance
for the main classification or segmentation tasks. As a result, we checkout the
performance predictor model early in the training process in order to calculate
the probability of success for each given instance at inference. In summary, we
save network parameters as checkpoints in two different training states: check-
point one includes the auxiliary task parameters early in the training procedure
while checkpoint two contains the well-trained multi-task model parameters, i.e.,
model with the least measured error on the training set.

Estimating the probability of success in classification or segmentation label
predictions for each given instance at inference time requires computing the con-
ditional probability of success given the performance predictor softmax scores,
P (Success|score). We acheive this conditional probablity from our training ex-
amples by dividing the interval for the probability of success [0, 1] into M interval
bins (each of size 1/M). Performing inference on the training set using the sec-
ondary task paramters saved as checkpoint one, we output failure or sucess bi-
nary label predictions along with their raw softmax probabilities. For each data
point with a 0/1 prediction label, its corresponding predicted softmax score falls
into one interval Im = [m−1M , m

M) and thus fills the m-th bin up with one index.
Therefore, all or some of the bins will be finally filled with the number of instances
whose success probability scores have fallen into that bin. Given the failure or
success label predicted for each data point at training time, we normalize the
number of failure and success instances at every bin, and hence compute the
conditional softmax probability scores as P (score|Failure) or P (score|Success).
Employing Bayes’ Rule will result in P (Success|score), indicated by P (S|s):

P (S|s) =
P (s|S)

P (s|S) + P (s|F)P (F)
1−P (F)

,

where S and F denote “Success” and “Failure” predicted by our performance
predictor head and s is the softmax probability associated with that prediction.

3.3 Confidence Evaluation

In section 3.2 we defined how we measure confidence or probability of success
using our MTL model. Here we discuss what a good confidence modeling system
is and what metrics can be used for evaluation. An ideal confidence modeling
system is expected to be confident (outputs high PoS) for correct predictions and
uncertain (outputs low PoS) otherwise. We have set a threshold of 0.5 for the PoS
below which the confidence is low. We also consider evaluating the performance

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

ECCV

#***
ECCV

#***

ECCV-18 submission ID *** 7

on two different testset distributions: in-domain; a never-seen before dataset but
sampled from the same distribution as training, off-domain; a never-seen before
dataset that is drawn from a completely different distribution.
We use three metrics to evaluate confidence score:

1. Accuracy: computed as (tp+tn)/total and presents the sum of confident
successful and unconfident wrong predictions over the total predictions.

2. Precision: computed as tp/(tp + fp) and denotes how often we successfully
predict with high confident over total number of high confident wrong/correct
predictions.

3. F-score: We also use F-score to combine recall and precision together with
assigning double weight on precision. This is due to the fact that we think a
model that is more often highly confident despite being wrong (low precision)
can be more catastrophic than a model that is less often confident despite
being right (low recall).

4 Baseline: Temperature-scaled Confidence Calibration

Modern neural networks tend to produce high softmax probabilities on data in-
puts at test time, even on a new distributions that they have not seen before
[29, 24]; uncalibrated probabilities may not represent the true probability of suc-
cess at prediction time. Calibrating them to the proper scale is a popular way
of confidence modeling at instance level [20–24]. Recent work [24] introduces a
simple optimization technique to compute a Temperature parameter of the soft-
max function so that it alters the outputted probabilities such that they become
calibrated. Using various benchmarks of image classification, [24] reported state-
of-the-art calibration results compared to previous baselines, hence, we used this
method as our baseline.

For completeness, we summarize the Temperature Scaling method [24] here:
the method extends Platt scaling, and finds a single scalar parameter T for all
classes in the softmax probability function acting on the logit vector zi. The new
confidence score (q̂i) for class k will be then computed as:

q̂i = max
k

σSM (zi/T)(k)

It should be noted that despite the simplicity of these calibration methods, they
do not affect the model’s accuracy on the main task. They also can perform
poorly when tested in out-distribution data (See Fig. 2 for images and Table
4 for predictions). In contrast, our model is able to not only improve the per-
formance on the main task, but also—by using a simple Bayes’ rule on the
outputted probabilities of success/failure—is able to compute a more accurate
true probability of success.

5 Experimental Evaluation

We have implemented our multitask learning technique on various benchmark
image classification architectures as well as fully-convolutional networks for se-

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

ECCV

#***
ECCV

#***

8 ECCV-18 submission ID ***

Table 1. Top1 %error rate for Task 1 using STL and MTL (Task1) models on CI-
FAR10/100 for various model architectures. The number following a model’s name is
the network depth

Dataset Model
STL

%Error Parameters(M)
MTL (Task 1)

%Error Parameters(M)

CFR-10 ResNet 101 4.94 ± 0.02 42.51 4.69± 0.03 42.52
CFR-10 ResNet 18 5.19 ± 0.04 11.17 4.96± 0.01 11.17
CFR-10 DPN 92 5.25 ± 0.04 34.24 4.96± 0.02 34.24
CFR-10 DenseNet 121 4.94± 0.03 6.96 4.98 ± 0.04 6.96
CFR-10 MobileNet V2 6.29 ± 0.03 2.30 6.10± 0.03 2.30

CFR-100 ResNet 18 25.03 ± 0.04 11.22 24.81± 0.06 11.22
CFR-100 ResNext 29 2x64 23.44 ± 0.05 9.13 23.45 ± 0.01 9.22
CFR-100 DenseNet 121 22.95± 0.05 6.96 23.19 ± 0.06 7.05
CFR-100 MobileNet V2 25.17 ± 0.04 2.41 24.91± 0.03 2.41

mantic segmentation. Implementation details are given for each example as well
as an evaluation on both in-distribution and out-of-distribution data.

5.1 Image Classification

We have used CIFAR10 and CIFAR100 datasets. They both consist of 50000/10000
training and test color images of 32× 32 with 10/100 classes, respectively. Our
goal is to train a performance predictor along with the image classifier to out-
put confidence values in predictions. In the following section we will discuss our
results and observations on confidence prediction in image classification.

Improving main task performance As discussed in section 3.1 multitask
learning often helps with improving the main task if the two tasks are related.
Our results of implementing multi-task learning for confidence prediction are
all shown in Table 1. We have consistently used the same fashion of head in-
sertion for all architectures; adding one single hidden layer to perform a binary
classification with softmax nonlinearity. This results in slightly more number of
parameters in some architectures compared to their STL counterpart. A compar-
ison is made between the number of parameters in Table 1. It can be seen that
the slight increase in number of parameters which not only results in outper-
forming the state-of-the-art models, but also enables us to obtain the confidence
score, is well worth it. Results shown in Table 1 are averaged across 5 runs for
both CIFAR10 and CIFAR100 datasets.

In/out-distributional data We use the pretrained models presented in Table
1 and we evaluate on two types of testset distributions representing in-domain
and off-domain data. For testing CIFAR10/100 in-domain we use CIFAR10/100

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

ECCV

#***
ECCV

#***

ECCV-18 submission ID *** 9

Table 2. CIFAR-10 confidence prediction on in-domain (CIFAR10 testset) and off-
domain (Down-sampled ImageNet dogs [30]) data distributions

Testset Model
STL STL scaled[24] MTL

Acc Pr F1 Acc Pr F1 Acc Pr F1

ImgNt ResNet18 27.62 0.24 0.37 43.54 0.26 0.39 45.98 0.26 0.41
CFR10 94.61 0.95 0.96 94.61 0.96 0.96 95.02 0.97 0.98

ImgNt DPN92 39.40 0.98 0.55 41.5 0.39 0.55 42.87 0.46 0.63
CFR10 94.83 0.95 0.97 94.81 0.95 0.97 95.89 0.97 0.98

ImgNt DenseNet121 25.65 0.21 0.35 29.03 0.22 0.36 33.23 0.35 0.42
CFR10 95.20 0.95 0.98 95.22 0.95 0.98 96.40 0.97 0.98

ImgNt MobNet v2 32.57 0.29 0.45 35.10 0.30 0.46 38.45 0.41 0.60
CFR10 94.15 0.94 0.97 94.19 0.94 0.97 96.02 0.98 0.98

Table 3. CIFAR-100 confidence prediction on in-domain (CIFAR100 testset) and off-
domain (ImageNet fox) data distributions

Testset Model STL STL scaled[24] MTL
Acc Pr F1 Acc Pr F1 Acc Pr F1

ImgNt
ResNet18

28.66 0.00 0.00 85.70 0.00 0.00 57.55 0.34 0.35
CFR100 80.37 0.81 0.88 79.91 0.91 0.86 86.29 0.90 0.91

ImgNt
ResNext 29 2x64

37.23 0.00 0.00 89.66 0.00 0.00 70.21 0.36 0.38
CFR100 79.16 0.79 0.87 80.08 0.89 0.86 85.14 0.91 0.91

ImgNt
DenseNet121

30.36 0.00 0.00 87.14 0.00 0.00 43.45 0.34 0.35
CFR100 80.61 0.81 0.88 81.51 0.90 0.88 86.34 0.93 0.92

ImgNt
MobNet v2

38.84 0.00 0.00 92.91 0.00 0.00 53.92 0.25 0.27
CFR100 79.80 0.77 0.85 78.32 0.92 0.85 83.76 0.88 0.95

testsets and for off-domain, we use images of “dog” and “fox” classes from
down-sampled ImageNet dataset [30], respectively. We used class numbers 86,
87, 114, 149, 202, 253 to collect 7800 images of class “dog” and class number
1, 53, 62, 67, 159, 207 for total of 7160 class “fox” images.

For comparison, we use two other models to compare against. First, the most
naive approach of using raw output probabilities of the final softmax layer as
a measurement of confidence. We refer to his method as STL here. The second
model, which is our baseline [24], is using the temperature calibration tool on
top of STL model to calibrate the raw STL probabilities to be representative of
the model’s confidence (PoS). It will be denoted as STL-scaled model [24].

Table 2 and 3 demonstrate the confidence prediction results using STL, STL-
scaled [24], and MTL models on CIFAR10 and 100, respectively. On image clas-
sification task with a relatively small dataset such as CIFAR10 with low number
of classes, our model is able to often surpass the baseline and sometimes performs
the same. However, on a slightly more complicated task where number of classes

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

ECCV

#***
ECCV

#***

10 ECCV-18 submission ID ***

Fig. 2. Top row: random images from CIFAR-10 testset, left to right: cat, ship, car,
horse. Bottom row: random images from down-sampled ImageNet, left to right: all dogs

increases (CIFAR100), STL and scaled-STL [24] lose their performance on off-
domain dataset by not being able to assign low probabilities to miss-classified
predictions and high probabilities to correct ones using ResNet18, ResNext29,
and MobileNet. In contrast, MTL keeps being able to not only perform better
on the main image classification task, but also it is able to detect its failures by
assigning them low confidence score as well as being confident in the correctly
classified “fox” instances. While outperforming the baseline on both in/off do-
main distributions, MTL appears to be significantly useful on confidence predic-
tions on off-domain datasets where all other methods completely fail at. This is
in fact what happens in the real world applications. At test time, there is usually
very little control on distributions. Being able to model confidence appropriately
is significantly important in AI safety community [31].

It should be noted that the accuracy shown in Tables 2 and 3 should not be
confused with the accuracy of the main task (1.0 - Top1% error) shown in Table
1). Accuracy on the main task cannot be altered by calibration tools (such as
the baseline’s method) whereas our model is capable of increasing it (sec 5.1).

Some qualitative results from inferring a pre-trained ResNet18 with CIFAR10
on in/off-domain data distribution are depicted here. In Fig. 2 there are shown
randomly selected imaged from CIFAR10 test set (top row) and down-sampled
ImageNet [30] (bottom row). Table 4 and 5 show the predicted class for each
image along with its confidence score. The ‘horse’ class gets misclassified by
all models but it is MTL that knows this mistake will occur, therefore tags it
with confidence score of 0.0 whereas both STL and STL-scaled [24] seem to be
confident in their mistake with PoS = 0.6-0.7.

5.2 Semantic Segmentation

Here we discuss using MTL in semantic segmentation. Our goal here is to model
confidence in segmentation predictions per pixel. We have used two datasets:
Cityscapes [11] and SBD [32]. Cityscapes is a dataset with focus on semantic
understanding of urban scenes. It includes 2975/500 color images in training/test

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

ECCV

#***
ECCV

#***

ECCV-18 submission ID *** 11

Table 4. Confidence scores predicted by STL, STL-scaled [24], and MTL, pre-trained
on CIFAR10, on example images drawn from CIFAR10 testset shown in Fig. 2, top
row

STL raw/scaled STL [24] Cat Ship Car Dog
Raw STL PoS 1. 0.99 0.99 0.75
Scaled PoS [24] 1. 0.99 0.99 0.62

MTL (ours)
Cat,
Success

Ship,
Success

Car,
Success

Dog,
Failure

MTL PoS (ours) 0.99 1 1 0.00

Table 5. Confidence scores predicted by STL, STL-scaled [24] , and MTL, pre-trained
on CIFAR10, on example images drawn from ImageNet dogs shown in Fig. 2, bottom
row

STL raw/scaled STL [24] Ship Cat Cat Cat
Raw STL PoS 0.88 0.99 0.99 0.69
Scaled PoS [24] 0.78 0.99 0.99 0.66

MTL (ours)
Ship,
Failure

Dog,
Success

Cat,
Failure

Cat,
Failure

MTL PoS (ours) 0.02 0.98 0.15 0.22

set with 19 classes per pixel. We scaled the images to size 256 × 256. SBD
is a widely used dataset for image segmentation containing annotations from
8829/1449 in training and test set with 21 number of classes per pixels.

For our segmentation model we have used fully-convolutional networks [10]
throughout our experiments. We have added an extra head (a hidden layer with
two number of classes) for all the classification heads in the architecture resulting
in less that 0.001% increase in the number of parameters. We have used a Pytorch
implementation of FCN provided by [33] for our experiments which differs from
the original Caffe implementation of FCN. Due to this difference, the results for
mean IoU and mean accuracy differ from the original implementation. However,
it is still a fair comparison to compare our MTL model against the STL and
STL-scaled [24] models using the same base implementation.

Improving main task performance Similar to the image classification regime,
we have been able to increase the performance of the model on the main task us-
ing MTL compared to the original STL model. Results for the maximum achieved
mean IoU and accuracy over 100 epochs are tabulated in Table 6 and plotted
in Fig. 3. On SBD, we have unarguably outperformed the STL performance us-
ing both evaluation metrics while on Cityscapes, MTL and STL performance
match together. Note that this is just a side benefit of MTL method and is not
guaranteed that it boosts the performance on all tasks. However it is extremely
useful when it occurs considering the fact that confidence calibration tools have
no control over model’s accuracy.

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

ECCV

#***
ECCV

#***

12 ECCV-18 submission ID ***

Table 6. Maximum mean IoU and mean accuracy achieved by training FCN8s using
STL and MTL on Cityscapes and SBD datasets

Cityscapes SBD
STL MTL (Task1) STL MTL (Task1)

Mean IoU 0.36 0.36 0.59 0.61
Mean accuracy 0.45 0.45 0.77 0.81

Table 7. Confidence score prediction on semantic segmentation with FCN8s using
STL, STL-scaled [24], and MTL methods, trained on entire SBD or Cityscapes. Testing
cross-domains has been done on cars only

Trainset Testset
STL STL Scaled [24] MTL

Acc Pr F1 Acc Pr F1 Acc Pr F1

CScapes
CScapes 16.30 0.31 0.32 16.44 0.41 0.43 77.10 0.63 0.58
SBD Cars 48.30 0.08 0.09 20.6 0.21 0.24 53.51 0.61 0.63

SBD
CScapes Cars 48.60 0.05 0.16 49.39 0.23 0.22 56.78 0.64 0.65
SBD 54.17 0.08 0.10 20.6 0.21 0.34 57.01 0.65 0.63

0 20 40 60 80 100

Epochs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e

a
n

 I
o

U

MTL-SBD

STL-SBD

MTL-Cityscapes

STL-Cityscapes

0 20 40 60 80 100

Epochs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
e
a
n
 A

c
c
u
ra

c
y

MTL-SBD

STL-SBD

MTL-Cityscapes

STL-Cityscapes

Fig. 3. Mean IoU and mean accuracy per epoch for training FCN8s on Cityscapes and
SBD datasets using STL and MTL models

In/out-distributional data : There are few common classes between Cityscapes
and SBD datasets. For the off-domain dataset we have chosen one of these com-
mon classes (car) to test performance cross domains. Results for MTL perfor-
mance against naive STL and STL-scaled [24] are presented in Table 7. On
segmentation confidence prediction, MTL outperforms the baseline in all the
evaluation metrics on both in/off domain data distributions. It not only detects
better segmentations masks , but also predicts its performance well enough to
have a 6 times better F1 score compared to STL-scaled [24].

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

ECCV

#***
ECCV

#***

ECCV-18 submission ID *** 13

Fig. 4. Confidence prediction on Cityscapes dataset using STL-scaled [24] and MTL
methods. From left to right: input image, ground truth segmentation labels, confidence
heat-map obtained by MTL (ours), predicted segmentation labels by MTL (ours),
confidence heat-map obtained by STL-scaled (baseline, [24]), predicted labels by STL-
scaled (baseline, [24])

Here we also include some qualitative results on confidence measurement per
pixel for semantic segmentation. Figures 4 and 5 show the confidence predictions
per segmented pixels on Cityscapes and SBD datasets, respectively. We may
compare the predicted confidence scores using the heat-map visualization for
probability of success. Comparing the heat-map obtained by MTL against the
STL-scaled [24] method, it is apparent how sensitive MTL is to not being able to
segmenting out the fine-grained labels. While STL-scaled method [24] appears to
be uncertain only on undetected boundaries, MTL assigns low confidence scores
on both undetected boundaries as well as undetected fine-grained segments such
that one can immediately concludes that there must be a crowd of fine-grain
segmentation labels when MTL heat-map appears to heat-up (correspondent to
low confidence) in a specific region.

In Fig. 5 on images where a large region (not just boundaries) has been
wrongly segmented out. MTL heatmaps appear to pronounce uncertainty more
drastically than STL-scaled [24] (rows 1, 2, and 4) while STL-scaled [24]seems to
be overconfident by assigning minimum score of≈ 0.6 versus near-zero confidence
predictions made by MTL.

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

ECCV

#***
ECCV

#***

14 ECCV-18 submission ID ***

Fig. 5. Confidence prediction on SBD dataset using STL-scaled [24] and MTL meth-
ods. From left to right: input image, ground truth segmentation labels, confidence
heat-map obtained by MTL (ours), predicted segmentation labels by MTL (ours),
confidence heat-map obtained by STL-scaled (baseline, [24]), predicted labels by STL-
scaled (baseline [24])

6 Conclusion

In this paper we have defined performance learning as an additional task that
every neural network can learn in parallel to its main task(s) in a multitask
learning fashion. We explained how these two tasks are mutually inclusive and
can be beneficial to another in gaining high performance at both. We also pro-
posed a simple Bayesian inference on the output probabilities of the performance
learner and map them to the true probability of success or confidence at a given
instance. We first showed that MTL can improve the model performance on the
main task; on image classification benchmarks we were able to outperform nearly
all the state-of-the-art architectures and on segmentation problem we were able
to outperform in mean IoU and mean accuracy of the equivalent STL model.
We evaluated our confidence learner on its accuracy, precision, and f-score on
in/out distributional datasets and were able to surpass the baseline in having a
higher f-score and accuracy.

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

ECCV
#***

ECCV
#***

ECCV-18 submission ID *** 15

References

1. Amato, F., López, A., Peña-Méndez, E.M., Vaňhara, P., Hampl, A., Havel, J.:
Artificial neural networks in medical diagnosis (2013)

2. Khan, J., Wei, J.S., Ringner, M., Saal, L.H., Ladanyi, M., Westermann, F.,
Berthold, F., Schwab, M., Antonescu, C.R., Peterson, C., et al.: Classification
and diagnostic prediction of cancers using gene expression profiling and artificial
neural networks. Nature medicine 7(6) (2001) 673–679

3. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P.,
Jackel, L.D., Monfort, M., Muller, U., Zhang, J., et al.: End to end learning for
self-driving cars. arXiv preprint arXiv:1604.07316 (2016)

4. Ebrahimi, S., Rohrbach, A., Darrell, T.: Gradient-free policy architecture search
and adaptation. In: Proceedings of the 1st Annual Conference on Robot Learning.
Volume 78 of Proceedings of Machine Learning Research., PMLR (13–15 Nov 2017)
505–514

5. Kaastra, I., Boyd, M.: Designing a neural network for forecasting financial and
economic time series. Neurocomputing 10(3) (1996) 215–236

6. Kendall, A., Gal, Y.: What uncertainties do we need in bayesian deep learning for
computer vision? In: Advances in Neural Information Processing Systems. (2017)
5580–5590

7. Gao, T., Koller, D.: Discriminative learning of relaxed hierarchy for large-scale
visual recognition. In: Computer Vision (ICCV), 2011 IEEE International Confer-
ence on, IEEE (2011) 2072–2079

8. Zhang, P., Wang, J., Farhadi, A., Hebert, M., Parikh, D.: Predicting failures of
vision systems. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. (2014) 3566–3573

9. Kahn, G., Villaflor, A., Pong, V., Abbeel, P., Levine, S.: Uncertainty-aware rein-
forcement learning for collision avoidance. arXiv preprint arXiv:1702.01182 (2017)

10. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. (2015) 3431–3440

11. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene
understanding. In: Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). (2016)

12. Denker, J.S., Lecun, Y.: Transforming neural-net output levels to probability dis-
tributions. In: Advances in neural information processing systems. (1991) 853–859

13. MacKay, D.J.: Bayesian methods for adaptive models. PhD thesis, California
Institute of Technology (1992)

14. Balan, A.K., Rathod, V., Murphy, K.P., Welling, M.: Bayesian dark knowledge.
In: Advances in Neural Information Processing Systems. (2015) 3438–3446

15. Hernández-Lobato, J.M., Adams, R.: Probabilistic backpropagation for scalable
learning of bayesian neural networks. In: International Conference on Machine
Learning. (2015) 1861–1869

16. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in
neural networks. arXiv preprint arXiv:1505.05424 (2015)

17. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In: international conference on machine learn-
ing. (2016) 1050–1059

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

ECCV

#***
ECCV

#***

16 ECCV-18 submission ID ***

18. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: A simple way to prevent neural networks from overfitting. The Jour-
nal of Machine Learning Research 15(1) (2014) 1929–1958

19. Gal, Y.: Uncertainty in deep learning. University of Cambridge (2016)
20. Zadrozny, B., Elkan, C.: Obtaining calibrated probability estimates from decision

trees and naive bayesian classifiers. In: ICML. Volume 1., Citeseer (2001) 609–616
21. Zadrozny, B., Elkan, C.: Transforming classifier scores into accurate multiclass

probability estimates. In: Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining, ACM (2002) 694–699

22. Naeini, M.P., Cooper, G.F., Hauskrecht, M.: Obtaining well calibrated probabilities
using bayesian binning. In: AAAI. (2015) 2901–2907

23. Platt, J., et al.: Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods. Advances in large margin classifiers 10(3) (1999)
61–74

24. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural
networks. arXiv preprint arXiv:1706.04599 (2017)

25. Hagen, J.W., Jongeward, R.H., Kail Jr, R.V.: Cognitive perspectives on the devel-
opment of memory. In: Advances in child development and behavior. Volume 10.
Elsevier (1975) 57–101

26. Scheirer, W.J., Rocha, A., Micheals, R.J., Boult, T.E.: Meta-recognition: The
theory and practice of recognition score analysis. IEEE transactions on pattern
analysis and machine intelligence 33(8) (2011) 1689–1695

27. Caruana, R.: Learning many related tasks at the same time with backpropagation.
In: Advances in neural information processing systems. (1995) 657–664

28. Caruana, R.: Multitask learning. In: Learning to learn. Springer (1998) 95–133
29. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-

distribution examples in neural networks. arXiv preprint arXiv:1610.02136 (2016)
30. Chrabaszcz, P., Loshchilov, I., Hutter, F.: A downsampled variant of imagenet as

an alternative to the cifar datasets. arXiv preprint arXiv:1707.08819 (2017)
31. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Con-

crete problems in ai safety. arXiv preprint arXiv:1606.06565 (2016)
32. Hariharan, B., Arbelaez, P., Bourdev, L., Maji, S., Malik, J.: Semantic contours

from inverse detectors. In: International Conference on Computer Vision (ICCV).
(2011)

33. Shah, M.P.: Semantic segmentation architectures implemented in pytorch.
https://github.com/meetsahh1995/pytorch-semseg (2017)

